top of page

Великие русские математики

 "Именно математика дает надежнейшие правила: кто им следует – тому не опасен обман чувств". 

 

Леонард Эйлер

(Leonhard Euler)

(04.04.1707 — 07.09.1783)

Швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.

Эйлер — автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.

Благодаря Эйлеру в математику вошли общая теория рядов, «формула Эйлера», углы Эйлера, операция сравнения по целому модулю, теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицыгамма-функция и многое другое.

 

Виктор Яковлевич Буняковский

(16.12.1804 – 12.12.1889)

Русский математик, член Петербургской Академии Наук (1830) и ее вице-президент (1864-1889гг.). Родился в Баре (ныне Винницкой области). Начальное образование – домашнее. В 1820-1825гг. учился за границей, в частности в Париже, где в то время преподавали такие знаменитые ученые, как П. С. Лаплас, Ж. Б. Ж. Фурье, С. Д. Пуассон, О. Л. Коши, А. М. Лежандр, А. М. Ампер и другие. Больше всего работал Буняковский по теории чисел и теории вероятностей.

В 1839 году Буняковский выпустил в свет свой первый том «Лексикона чистой и прикладной математики», доведённый им, по недостатку средств, лишь до буквы «Д». В 1846 году появился труд Буняковского, послуживший началом его всемирной известности, — «Основания математической теории вероятностей».

Все работы Буняковского, ставящие его в число величайших европейских математиков, помимо ценности в научном отношении — по богатству, новизне и оригинальной разработке научно-математических материалов, — отличаются замечательной ясностью и изяществом изложения. Многие из них переведены на иностранные языки.

Буняковский изобрёл: планиметрпантограф, прибор для измерения квадратов, самосчёты Буняковского — вычислительный механизм, основанный на принципе действия русских счётов. Аппарат предназначался для сложения большого числа двузначных чисел.

"Математика – это язык, на котором говорят все точные науки". 

 

Николай Иванович Лобачевский

(20.11.1792 — 12.02.1856)

Русский математик, создатель неевклидовой геометрии, названной его именем, деятель университетского образования и народного просвещения.

Открытие Лобачевского (1826, опубликованное 1829-30), не получившее признания современников, совершило переворот в представлении о природе пространства, в основе которого более 2 тыс. лет лежало учение Евклида, и оказало огромное влияние на развитие математического мышления.

Лобачевский получил ряд ценных результатов и в других разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений, в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др.

В разные годы он опубликовал несколько блестящих статей по математическому анализу, алгебре и теории вероятностей, а также по механике, физике и астрономии.

"Науки математические с самой глубокой древности обращали на себя особенное внимание, в настоящее время они получили еще больше интереса по влиянию своему на искусство и промышленность".  

 

Пафнутий Львович Чебышев

(16.05.1821 – 26.11.1894)

Выдающийся русский математик и механик, автор классических открытий в теории чисел, теории вероятностей, теории механизмов. В частности, им доказаны в теории вероятностей, в общей форме, закон больших чисел, в теории чисел асимптотический закон распределения простых чисел и др. Чебышев был основоположником нового раздела теории функций: конструктивной теории функций, основным составным элементом которой является теория наилучших приближений функций многочленами.

Чебышев создал самостоятельную русскую математическую науку о механизмах, поставил в ней такие проблемы, к решению которых наука стала подходить только в начале 20 века.

 

 

Со́фья Васи́льевна Ковале́вская

(15.01.1850 — 10.02.1891)

Русский математик, писательница, член-корреспондент Петербургской Академии наук. Первая в России и в Северной Европе женщина-профессор математики.

Получила домашнее образование, брала уроки высшей математики у А.Н. Страннолюбского. В 1869 году училась в Гейдельбергском университете у Кенигсбергера, а с 1870 года по 1874 год в Берлинском университете у К. Вейерштрасса. В 1874 году Гёттингенский университет, после защиты диссертации присвоил С.В. Ковалевской степень доктора философии.

В 1881 С.В. Ковалевская избрана в члены Московского математического общества.

В. 1884 году становится профессором кафедры математики в Стокгольмском университете.

Лауреат премий Парижской и Шведской академии наук.

Наиболее важные исследования С.В. Ковалевской относятся к теории вращения твёрдого тела. Она открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Доказала существование аналитического (голоморфного) решения задачи Коши для систем дифференциальных уравнений с частными производными, исследовала задачу Лапласа о равновесии кольца Сатурна, получила второе приближение.

Решила задачу о приведении некоторого класса абелевых интегралов третьего ранга к эллиптическим интегралам. Работала также в области теории потенциала, математической физики, небесной механики.

 

Александр Михайлович Ляпунов

(25.05.1857 — 03.11.1918)

Русский математик и механик, академик Петербургской Академии наук.

Ляпунов создал теорию устойчивости равновесия и движения механических систем, определяемых конечным числом параметров. С математической стороны этот вопрос сводится к исследованию предельного поведения решений систем обыкновенных дифференциальных уравнений при стремлении независимого переменного к бесконечности. Устойчивость определялась по отношению к возмущениям начальных данных движения.

Важен вклад Ляпунова в теорию вероятностей, а его исследования по теории потенциала открыли новые пути для развития методов математической физики. Большой вклад внесли работы Ляпунова и в математическую физику, в частности в теорию потенциала. Особенно важен его мемуар «О некоторых вопросах, касающихся проблемы Дирихле» (1898).

 

Великие русские математики

©Сайт учителя математики Комарова Михаила Сергеевича

  • Facebook Social Icon
  • Twitter Social Icon
  • Google+ Social Icon
bottom of page